BIRNet: Brain Image Registration Using Dual-Supervised Fully Convolutional Networks
نویسندگان
چکیده
In this paper, we propose a deep learning approach for image registration by predicting deformation from image appearance. Since obtaining ground-truth deformation fields for training can be challenging, we design a fully convolutional network that is subject to dual-guidance: (1) Coarse guidance using deformation fields obtained by an existing registration method; and (2) Fine guidance using image similarity. The latter guidance helps avoid overly relying on the supervision from the training deformation fields, which could be inaccurate. For effective training, we further improve the deep convolutional network with gap filling, hierarchical loss, and multi-source strategies. Experiments on a variety of datasets show promising registration accuracy and efficiency compared with state-of-the-art methods.
منابع مشابه
Non-Rigid Image Registration Using Self-Supervised Fully Convolutional Networks without Training Data
A novel non-rigid image registration algorithm is built upon fully convolutional networks (FCNs) to optimize and learn spatial transformations between pairs of images to be registered in a self-supervised learning framework. Different from most existing deep learning based image registration methods that learn spatial transformations from training data with known corresponding spatial transform...
متن کاملBrain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks
Automatic labeling of anatomical structures in brain images plays an important role in neuroimaging analysis. Among all methods, multi-atlas based segmentation methods are widely used, due to their robustness in propagating prior label information. However, non-linear registration is always needed, which is time-consuming. Alternatively, the patch-based methods have been proposed to relax the r...
متن کاملTexture segmentation with Fully Convolutional Networks
In the last decade, deep learning has contributed to advances in a wide range computer vision tasks including texture analysis. This paper explores a new approach for texture segmentation using deep convolutional neural networks, sharing important ideas with classic filter bank based texture segmentation methods. Several methods are developed to train Fully Convolutional Networks to segment tex...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملNon-rigid image registration using fully convolutional networks with deep self-supervision
We propose a novel non-rigid image registration algorithm that is built upon fully convolutional networks (FCNs) to optimize and learn spatial transformations between pairs of images to be registered. Different from most existing deep learning based image registration methods that learn spatial transformations from training data with known corresponding spatial transformations, our method direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.04692 شماره
صفحات -
تاریخ انتشار 2018