BIRNet: Brain Image Registration Using Dual-Supervised Fully Convolutional Networks

نویسندگان

  • Jingfan Fan
  • Xiaohuan Cao
  • Pew-Thian Yap
  • Dinggang Shen
چکیده

In this paper, we propose a deep learning approach for image registration by predicting deformation from image appearance. Since obtaining ground-truth deformation fields for training can be challenging, we design a fully convolutional network that is subject to dual-guidance: (1) Coarse guidance using deformation fields obtained by an existing registration method; and (2) Fine guidance using image similarity. The latter guidance helps avoid overly relying on the supervision from the training deformation fields, which could be inaccurate. For effective training, we further improve the deep convolutional network with gap filling, hierarchical loss, and multi-source strategies. Experiments on a variety of datasets show promising registration accuracy and efficiency compared with state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Rigid Image Registration Using Self-Supervised Fully Convolutional Networks without Training Data

A novel non-rigid image registration algorithm is built upon fully convolutional networks (FCNs) to optimize and learn spatial transformations between pairs of images to be registered in a self-supervised learning framework. Different from most existing deep learning based image registration methods that learn spatial transformations from training data with known corresponding spatial transform...

متن کامل

Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks

Automatic labeling of anatomical structures in brain images plays an important role in neuroimaging analysis. Among all methods, multi-atlas based segmentation methods are widely used, due to their robustness in propagating prior label information. However, non-linear registration is always needed, which is time-consuming. Alternatively, the patch-based methods have been proposed to relax the r...

متن کامل

Texture segmentation with Fully Convolutional Networks

In the last decade, deep learning has contributed to advances in a wide range computer vision tasks including texture analysis. This paper explores a new approach for texture segmentation using deep convolutional neural networks, sharing important ideas with classic filter bank based texture segmentation methods. Several methods are developed to train Fully Convolutional Networks to segment tex...

متن کامل

Detection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals

Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...

متن کامل

Non-rigid image registration using fully convolutional networks with deep self-supervision

We propose a novel non-rigid image registration algorithm that is built upon fully convolutional networks (FCNs) to optimize and learn spatial transformations between pairs of images to be registered. Different from most existing deep learning based image registration methods that learn spatial transformations from training data with known corresponding spatial transformations, our method direc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04692  شماره 

صفحات  -

تاریخ انتشار 2018